
 

 

 

 

DSM060 Coursework 1: Literature Review 

Integrating Error-Related Potentials in Reinforcement Learning for BCI Systems 

Submitted for partial fulfilment for the Data Science Research Topics course. 

 

 

 

By 

Hendrik Matthys van Rooyen 

 

 

 

 

 

 

 

University of London 

November 2023 

  



i 

 

CONTENTS 

CHAPTER 1 ABSTRACT 2 

CHAPTER 2 KEYWORDS 3 

CHAPTER 3 BACKGROUND 4 

3.1 PURPOSE AND SCOPE 4 
3.2 RATIONALE 4 
3.3 CONTEXT 4 
3.4 METHODOLOGY 4 
3.4.1 SEARCH STRATEGY 4 
3.4.2 SOURCE EVALUATION 4 
3.5 BASIC CONCEPTS 4 
3.5.1 REINFORCEMENT LEARNING 4 
3.5.2 ERROR-RELATED POTENTIALS 4 

CHAPTER 4 REVIEW OF THE LITERATURE 5 

4.1 INTEGRATION OF ERRPS IN REINFORCEMENT LEARNING: 5 
4.1.1 MECHANISM OF ERRPS AS REWARD SIGNALS 5 
4.1.2 CHALLENGES AND LIMITATIONS 6 
4.2 COMPARATIVE ANALYSIS - ERRPS VS. TRADITIONAL REWARD SIGNALS 7 

CHAPTER 5 CONCLUSION AND DISCUSSION 8 

5.1 IDENTIFICATION OF GAPS 8 
5.2 RECOMMENDATIONS FOR FUTURE STUDIES 8 
5.3 KEY FINDINGS 8 
5.4 CLOSING REMARKS 8 

CHAPTER 6 REFERENCES 9 

 



2 

 

CHAPTER 1    ABSTRACT 
This literature review explores the use of error-related potentials (ErrPs) as a reward 

mechanism in reinforcement learning (RL) for brain-computer interface (BCI) technology. It 

primarily focuses on how ErrPs, as brain-derived signals, can enhance the learning and 

adaptability of RL algorithms in BCI systems. The review analyses current literature, 

including academic papers and comprehensive studies, with a special emphasis on the 

integration of non-invasive EEG techniques, and their implementation. It highlights the 

significant advantages of utilizing ErrPs in RL, such as providing a more intuitive and direct 

feedback loop that aligns closely with the user's cognitive states and intentions. The review 

also discusses the challenges and limitations inherent in this approach. It concludes by 

identifying potential areas for future research, particularly in refining the detection and use of 

ErrPs in diverse BCI applications. This review underscores the importance of ErrPs in 

enhancing the effectiveness and user responsiveness of BCI systems, presenting a promising 

direction for future advancements in the field.  
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CHAPTER 2    KEYWORDS 

Term Definition 

Error-Related Potentials 

(ErrPs) 

Brain signals that occur when an individual (human) monitors 

the performance of an action, their own or external, particularly 

noticeable during errors. They are studied by comparing brain 

activity during correct and incorrect actions, focusing on 

specific signals related to errors. 

Reinforcement Learning 

(RL) 

A type of machine learning where a model learns to make 

decisions by performing actions and receiving feedback in the 

form of rewards or penalties. The model is not explicitly told 

which actions to take but must discover which actions yield the 

most reward through trial and error. 

Brain-Computer Interface 

(BCI) 

A technology that enables direct communication between the 

brain and external devices. BCIs interpret brain signals, 

allowing individuals to control external devices or computers 

with their thoughts, often used for assisting individuals with 

disabilities. 

Electroencephalogram 

(EEG) 

A method for recording electrical activity of the brain using 

electrodes placed along the scalp. EEG is widely used in BCI 

technology due to its non-invasive nature and is particularly 

useful for capturing ErrPs. 
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CHAPTER 3    BACKGROUND 

3.1 PURPOSE AND SCOPE 

This review explores the application of reinforcement learning in classifying EEG signals for 

use as computer inputs, a promising area in brain-computer interface (BCI) technology. 

3.2 RATIONALE 

Given the complexities of EEG signals and the potential of reinforcement learning to adapt 

and optimize performance, this study could offer significant advancements in BCI. 

3.3 CONTEXT 

BCIs facilitate communication between the brain and external devices, which may be 

especially useful for individuals with certain disabilities. EEG (opposed to iEEG and MRI), a 

non-invasive method, is widely used in BCI due to its portability and cost-effectiveness. 

3.4 METHODOLOGY 

3.4.1 SEARCH STRATEGY 

Journals and other online resources (such as data sets) were gathered using key terms to 

search, as specified in Chapter 2. From resulting journals some select references were then 

considered as well. 

3.4.2 SOURCE EVALUATION 
Priority focus was given to recent, peer-reviewed papers and systematic reviews. As well as 

papers and documents referenced within the previously selected papers. 

3.5 BASIC CONCEPTS 

3.5.1 REINFORCEMENT LEARNING 

According to Barto and Sutton (2018), reinforcement learning is the process through which 

the learning agent is not told which actions to take but is instead encouraged to explore 

available options to identify those most rewarding. 

Per Liu et al. (2023), Reinforcement learning does have successful applications in the 

medical field and describes the RL agent as following an optimization strategy to identify the 

appropriate action for a given task. 

3.5.2 ERROR-RELATED POTENTIALS 
According to Xavier Fidêncio et al. (2022) ErrPs, short for error-related potentials, are brain 

signals that occurs when a human monitors performance of an action. To study these, 

scientists look at the difference in brain activity when people make mistakes compared to 

when they do things correctly. They average these differences over all subjects and trials. 

This method helps to focus on the specific brain signals related to errors. The characteristics 

of ErrPs are identified by looking at these differences in brain activity.  
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CHAPTER 4    REVIEW OF THE LITERATURE 

4.1 INTEGRATION OF ERRPS IN REINFORCEMENT LEARNING: 

4.1.1 MECHANISM OF ERRPS AS REWARD SIGNALS 

The identification of ErrPs, as with many other non-invasive BCI inputs makes use of an 

electroencephalogram (EEG) machine Millan (2005) describes the process they followed to 

identify ErrPs evoked from erroneous BCI responses. They describe the process as follows: 

1. EEG signals are acquired non-invasively from the scalp using electrodes. These signals 

are then spatially filtered and bandpass filtered (1-10 Hz) to focus on the ErrP, which are 

known to be slow cortical potentials. 

2. The EEG signals are subsampled, and the relevant window for classification is identified. 

This window starts 150 ms after the feedback and ends 650 ms after the feedback, 

focusing on channels Cz and Fz due to the fronto-central distribution of ErrP. 

3. A Gaussian classifier is used to classify single trials as "correct" or "error." The classifier 

is trained using temporal features extracted from EEG signals. 

4. The Gaussian classifier consists of several prototypes representing different classes. The 

classifier is trained using clustering algorithms and stochastic gradient descent to 

minimize error. 

Ferrez and Millan (2008) used sLORETA to estimate intracranial activity and a Gaussian 

classifier for single-trial classification of ErrPs. Recognition rates for erroneous and correct 

responses were analyzed. They confirmed that  

In a later study by Xu et al. (2021), the researchers tried a different approach where all 

waveforms were classified as either ErrP or non-ErrP. In this study the Riemannian Geometry 

framework was used for classification. 

According to Xavier Fidêncio et al. (2022) evoked ErrPs classifications is found in literature: 

• Response Errors: Occur when a subject responds quickly to a stimulus. 

• Feedback Errors: Arise when feedback informs the subject about the outcome of their 

choice. 

• Target Errors: Triggered by unexpected changes in a task, like during a reaching/aiming 

task. 

• Interaction Errors: Happen when there is a mismatch between a subject's command and 

the system's execution. 

• Execution Errors: Occur when the system executes a different action than the command 

given by the subject. Xavier Fidêncio et al. does note that this may be the same as 

Interaction errors. 

• Outcome Errors: Present when the desired goal of a movement is not fulfilled. 

• Observation Errors: Emerge when a subject observes an error made by an external 

system. 

Xavier Fidêncio et al. (2022) also states that ErrPs are shown to be generated not only from 

self-made errors but also during interactions with or observations of external systems. They 

state that several experiments have explored ErrPs in tasks requiring high concentration, such 

as motor imagery or cognitive tasks. In addition to detection, they discuss how some research 

has explored the practical application of ErrPs in improving BMI performance. This includes 
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using online ErrPs detection to enhance BMIs, correcting human response errors, stopping 

cursor movements, and integrating error-correction mechanisms in BCI spellers. 

Xu et al. (2021) explored two approaches to integrating the ErrP feedback into a 

Reinforcement Learning model. Firstly the “full access method”, in which every state-action 

pair is evaluated against the evoked or non-evoked ErrP signal, rewarding the function if no 

ErrP signal is present, thus optimizing the RL toward not committing actions that would 

evoke ErrPs.  

The second, the researchers call this the “robust reward shaping framework”, is aimed at 

reducing the total number of ErrP queries and the load on the human in the loop. This is 

achieved by recording ErrP signals beforehand against a set dataset, which is then used to 

learn an auxiliary reward function that can compensate for the sparser environmental reward 

during RL training. The method focuses on learning the optimal policy in the human mind, 

improving the robustness to mistakes in ErrP decoding. Unlike the full access method, this 

approach only requires human feedback on initially generated trajectories. 

Kim et al. (2017) approached controlling robot movement in simulation and reality by means 

of hand gesture through training a contextual bandit approach Reinforcement Learning 

model, while using the LinUCB algorithm. They chose this approach specifically for the 

requirement of mapping gesture to movement. Here they used the lack of ErrPs (NoErrPs) as 

focus in training the RL model, only updating on positive feedback. According the 

researchers, this differentiation between ErrPs and NoErrPs allows the RL system to adjust its 

policy based on the accuracy of its actions relative to the user's intentions. 

4.1.2 CHALLENGES AND LIMITATIONS 

Xavier Fidêncio et al. (2022) discusses some of the challenges in detecting and interpreting 

ErrPs. That ErrPs can be generated in the brain not only due to self-made errors but also 

during interaction or observation of external system operations. This variability is discussed 

above in the ErrPs classifications. Furthermore, the researchers found that the standard of 

ErrP measurement differs from study to study, making it difficult to establish a baseline. 

Sentiment regarding existing uncertainty introduced by the ErrP classification exists in 

multiple studies (Liu et al., 2023) (Xu et al., 2021) (Blankertz et al., 2003) although this is a 

recurrent theme in papers studying other brain signal classification as well. (Abenna et al., 

2022) (Wan et al., 2023) 

Xavier Fidêncio et al. (2022) also finds that ErrPs have been applied in various contexts such 

as BCI spellers, robotic arm, and software control, each presenting unique challenges in error 

signal interpretation. 

Xavier Fidêncio et al. (2022) poses that, while there are cases in which ErrPs has been 

integrated with some benefit, it may not always be the case. They refer to Iturrate et al. 

(2015b) as showing that the overall online decoding accuracy was not significantly different 

from standard training approaches. However, it is noteworthy that in a case such as Xu et al., 

(2021), the goal isn’t to achieve a higher classification accuracy through the use or ErrPs, but 

to alleviate strain on the human participant, therefor making the training process easier. 
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4.2 COMPARATIVE ANALYSIS - ERRPS VS. TRADITIONAL REWARD 

SIGNALS 

Xu et al., (2021) demonstrates that ErrPs provide a more efficient and less burdensome 

method of integrating human feedback into RL compared to traditional explicit feedback 

methods. This is achieved through innovative approaches like zero-shot learning, reward 

shaping frameworks, and effective combination of different types of rewards. 

Xavier Fidêncio et al. (2022) found that ErrPs show considerable promise in enhancing the 

learning efficiency of RL models, particularly in brain-machine interfaces. They provide a 

direct, brain-derived feedback mechanism that can dynamically adjust learning strategies 

based on the user's neural responses to errors, offering a personalized and potentially more 

effective approach compared to traditional reward signals in RL. 

Kim et al., (2017) showed the use of ErrPs as intrinsic feedback in RL demonstrates 

promising results, especially in terms of learning efficiency and adaptability in real-world 

scenarios. The study highlights the potential of integrating human cognitive states, as 

reflected in EEG signals, into robotic control systems for enhanced human-robot interaction.  
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CHAPTER 5    CONCLUSION AND DISCUSSION 

5.1 IDENTIFICATION OF GAPS 

The review has identified certain gaps in the current state of research. While ErrPs have been 

successfully integrated into RL, there remains a lack of standardization in their measurement 

and interpretation across different studies. This variability hinders the establishment of a 

consistent baseline for comparing results and developing universal applications. 

The review also failed to identify a multiple/complex input study beyond that of the BCI 

typing that BCI spellers (Margaux et al., 2012; Bevilacqua et al., 2020), from the Xavier 

Fidêncio et al. (2022) review which attempted to use ErrPs in the reward function of the RL 

model. 

5.2 RECOMMENDATIONS FOR FUTURE STUDIES 

Future research should focus on standardizing ErrP measurements and developing more 

robust algorithms capable of handling the variability and noise inherent in EEG signals. 

Additionally, exploring the integration of ErrPs in more diverse BCI applications, such as 

those involving complex motor tasks or cognitive functions, could yield valuable insights. 

5.3 KEY FINDINGS 

The key findings from the literature suggest that ErrPs offer a promising avenue for 

enhancing the efficiency of RL in BCIs. Studies have shown that ErrPs can serve as a direct, 

brain-derived reward mechanism, potentially offering a more personalized and effective 

approach compared to traditional reward signals in RL. 

5.4 CLOSING REMARKS 

In conclusion, the integration of ErrPs in RL presents a significant opportunity to advance 

BCI technology. While challenges persist, the potential benefits of a more focused and direct 

brain-machine interface are considerable. By addressing the identified gaps and building 

upon the current knowledge base, future research can pave the way for more sophisticated 

and user centred BCI systems. 

 

Wordcount: 2068  
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